
Albatross - Language Description

Helmut Brandl
email: firstname dot lastname at gmx dot net

Copyright c© Helmut Brandl

Version 0.2

Contents

1 Introduction 3

2 Overview 4

3 Tutorial 5
3.1 Getting Started . 5

3.1.1 A Minimal Albatross Program 5
3.1.2 Reasoning with Implication 7
3.1.3 The Deduction Law . 8
3.1.4 Conjunction . 9
3.1.5 Disjunction . 10

3.2 Boolean Logic . 11
3.2.1 Idempotence of Conjunction and Disjunction 12
3.2.2 Ex Falso Quodlibet . 13
3.2.3 De Morgan Laws . 15

3.3 Important Modules of the Base Library 17
3.3.1 The Module ’any’ . 17
3.3.2 The Module ’predicate’ 18

3.4 Predicate Logic . 21
3.4.1 Some Simple Theorems 21
3.4.2 Singleton Sets . 22
3.4.3 Leibniz Equality and Term Rewriting 23
3.4.4 Existential Quantification 24

3.5 Using and Proving Abstractions 26
3.5.1 Partial Order . 27
3.5.2 Linear Order . 30

3.6 Inductive Data Types . 31
3.6.1 Basics of Inductive Types 32
3.6.2 Recursion and Induction 34
3.6.3 Inversion and Injection Laws 40
3.6.4 Binary Tree . 40
3.6.5 List Sorting . 42

1

4 Proof Engine 50
4.1 Rules of the Proof Engine . 50

4.1.1 Modus Ponens and Deduction Law 50
4.1.2 Generalization of Variables 51
4.1.3 Specialization of Variables 51
4.1.4 Existential Quantification 52
4.1.5 Function Expansion . 52
4.1.6 Beta Reduction . 53

4.2 How the Proof Engine Works . 53
4.2.1 Proof of an Assertion Feature 53
4.2.2 Prove an Assertion . 54
4.2.3 Directly Prove a Goal . 54
4.2.4 Entering and Discharging 55
4.2.5 Forward Reasoning . 56
4.2.6 Backward Reasoning . 56
4.2.7 Evaluation . 57

5 Language Reference 59
5.1 Structure of Albatross Programs 59
5.2 Modules . 60
5.3 Classes . 63
5.4 Creators . 64
5.5 Inheritance . 65
5.6 Types . 65
5.7 Named features . 66
5.8 Assertions . 69
5.9 Expressions . 70
5.10 Lexical Conventions . 72

2

Chapter 1

Introduction

Albatross is a programming language which can be verified statically. You write
programs in Albatross and prove them to be correct in the same language.

What is a correct program? A program is correct if it is consistent with its
specification. Specifications in Albatross are assertions which express correct-
ness conditions. Assertions are boolean expressions in predicate logic.

A verified Albatross programm has as proof for each assertion. The proof is
generated by the compiler.

But since assertions are expressed in predicate logic and predicate logic is not
decidable for arbitrary expressions the theorem prover in the Albatross compiler
cannot prove all valid assertions.

Therefore the programmer has to provide the proof steps which cannot be
done by the compiler automatically. The automation features have been de-
signed with the following philosophy:

• The compiler does all low level work that can be done efficiently without
entering a hugh search space.

• The programmer has to provide the more intelligent steps which require
some creativity.

Because of this philosophy the Albatross compiler is something between a
proof assistant and a theorem prover.

3

Chapter 2

Overview

4

Chapter 3

Tutorial

3.1 Getting Started

3.1.1 A Minimal Albatross Program

In the following we assume that you have successfully installed the Albatross
compiler under the name alba and compiled the basic library of the Albatross
system and initialized an environment variable which points to the location of
the base library as described in the Readme file of the albatross distribution.

An Albatross program is an albatross package which is a directory with
collection of albatross source files. Since we want to create a minimal albatross
programm we create a package by creating a new directory with one source file
called minimal.al. Any text editor can be used to create the file.

Our version of the minimal program looks like

-- file: minimal.al

use
alba.base.boolean -- uses the module ’boolean’ of the

-- library ’alba.base’
end

all(a:BOOLEAN)
require

a -- assume ’a’
ensure

a -- conclude ’a’
end

The directory where the source file resides is not yet initialized as an albatross
directory. We initialize it by issuing the command

alba init

from the command line. The albatross compiler keeps track of dependencies
between modules and the init command creates a hidden subdirectory in the

5

package directory where the compiler can store dependencies and some other
information on compiled modules.

Issuing the command

alba status

we get the information

new: minimal.al

i.e. the compiler tells us that the file is new and has not yet been compiled.
With the command

alba compile

we compile the module successfully and a following status request shows that
nothing has to be done for the package.

If we modify the file and request the status again we get the answer

modified: minimal.al

and in the case that more modules depend on this module we also get the list
of all files which need recompilation because of the modification.

Now let us look at the content of the source file. The first block of a source
file is the usage block where all used modules are declared.

Our minimal program uses just the module boolean of the library alba.base.
This is necessary because we want to use a variable of type BOOLEAN which is
declared in the module boolean of the base library.

It is difficult to do anything without the data type BOOLEAN in any Albatross
module. Therefore it is always used either explicitly or implicitly. The module
boolean of the base library is the only module which doesn’t use other modules.

After the use block there is one proof which proves a rather trivial fact. It
declares a variable a of type BOOLEAN for the scope of the proof. Then it assumes
that a is valid. From the assumption it concludes that a is valid which succeeds
trivially.

After the successful proof the proof engine generates the expression

all(a:BOOLEAN) a ==> a

and adds it to the global context. It has proved a under the assumption a for
an arbitrary boolean expression which is a proof of the implication a ==> a.

This discharging of the assumptions is a generic procedure of the proof en-
gine. Whenever the proof engine can verify the assertion

all(x:X, y:Y,...)
require

a; b; ...
proof

...
ensure

z
end

it generates the discharged expression

6

all(x:X, y:Y, ...) a ==> b ==> ... ==> z

and adds it to the context.
Note that implication is right associative.

3.1.2 Reasoning with Implication

Implication is the most important boolean operator for doing proofs. The as-
sertion a ==> b states that given a we can immediately conclude b.

We can express the modus ponens law in Albatross as

all(a,b:BOOLEAN) -- modus ponens law of logic
require

a
a ==> b

ensure
b

end

This law is hardwired within the proof engine. Therefore the above assertion
compiles without problems.

The implication operator is right associative i.e. a ==> b ==> c is parsed as
a ==> (b ==> c). Therefore we can prove

all(a,b,c:BOOLEAN)
require

a ==> b ==> c
a

ensure
b ==> c

end

in one step by applying the modus ponens law. From a and a ==> b ==> c

we can conclude b ==> c. If we have furthermore b we can conclude c. I.e. the
following compiles as well

all(a,b,c:BOOLEAN)
require

a ==> b ==> c
b
a

ensure
c

end

Note that the order of the assumptions is irrelevant for the validity of the
conclusion.

The Albatross compiler does a full forward closure with respect to implica-
tion so that the following assertion is accepted by the compiler as well.

all(a,b,c,d,x,y,z:BOOLEAN)
require

a ==> b ==> c
a ==> b ==> d
x ==> y ==> z
c ==> x

7

d ==> y
a
b

ensure
z

end

Let us see how the compiler verifies this assertion. Internally the compiler
generates the following detailed proof

all(a,b,c,d,x,y,z:BOOLEAN)
require

a ==> b ==> c -- 1
a ==> b ==> d -- 2
x ==> y ==> z -- 3
c ==> x -- 4
d ==> y -- 5
a -- 6
b -- 7

proof -- generated by the proof engine
b ==> c -- 8 from 6,1
c -- 9 from 7,8
b ==> d -- 10 from 6,2
d -- 11 from 7,10
x -- 12 from 9,4
y -- 13 from 11,5
y ==> z -- 14 from 13,3

ensure
z -- from 13,14

end

All these steps are trivial applications of the modus ponens law. But it
would be very awckward if the programmer had to enter all these steps. It’s
better to let the compiler generate them.

3.1.3 The Deduction Law

Like the modus ponens law, the deduction law is hardwired into the proof engine.
The law states: We can prove an implication a ==> b by assuming a and

deriving b from it. On the other hand if we can prove b under the assumption
of a we can conclude the implication a ==> b from it.

We can demonstrate the application of the deduction law with the example
of the trivial assertion a ==> a.

all(a:BOOLEAN)
ensure

a ==> a
end

The statement ”a follows from a” is intuitively evident to us. But how do
we prove it? The compiler uses the deduction law and creates the following
detailed proof

all(a:BOOLEAN)
proof -- generated by the proof engine

require

8

a
ensure

a
end

ensure
a ==> a

end

Since there is no direct proof of a ==> a the proof engine shifts the antecedent
a of the implication into the assumptions and tries to prove the consequent
a of the implication from it. The latter step succeeds trivially because the
assumption and the goal are identical.

Don’t be misled by the triviality of the example. The deduction law scales
to more complicated settings and is very useful. Let’s assume that we want
to prove the implication chain a ==> b ==> c ==> ... ==> z. In order to prove
the chain the proof engine tries the deduction law

all(a,b,c,...,z:BOOLEAN)
proof

require
a; b; c; ...

proof
...

ensure
z

end
ensure

a ==> b ==> c ==> ... ==> z
end

and it is very convenient that the engine does it automatically.

3.1.4 Conjunction

The interface file of the module boolean gives us the following statements about
conjunction

-- file: boolean.ali
(and) (a,b:BOOLEAN): BOOLEAN

all(a,b:BOOLEAN)
ensure

a ==> b ==> a and b -- introduction rule of ’and’
a and b ==> a -- elimination rule of ’and’
a and b ==> b -- "

end

For the the conjunction operator only a signature is given. From it we only
know that conjunction is a binary boolean operator. No definition is available.

Instead of a definition the interface file gives us one introduction rule and
two elimination rules.

The introduction rule states: If we have a proof of a and a proof of b we can
conclude a and b from it.

9

The elimination rules state: If we have a proof of a and b we can conclude
either operand from it.

The introduction and elimination rules are schematic rules. For the variables
a and b we can substitute any boolean expression to obtain a valid assertion.

Using the introduction and elimination rules the proof engine can prove the
commutativity of and automatically.

all(a,b:BOOLEAN)
ensure

a and b ==> b and a
end

In order to understand what happens under the hood let us look at the
detailed proof which is generated by the proof engine.

all(a,b:BOOLEAN)
proof -- generated by the proof engine

require
a and b

proof
a and b ==> a
a
a and b ==> b
b
b ==> a ==> b and a
a ==> b and a

ensure
b and a

end
ensure

a and b ==> b and a
end

The generated proof is just a straighforward application of the deduction
law, the elimination and introduction rules.

Note that the proof engine applies schematic rules in forward direction only
if the conclusion is strictly simpler than the premise. Since this is the case for
the elimination rules of and they are applied automatically.

In the same manner the proof engine can prove the associativity of and

automatically.

all(a,b,c:BOOLEAN)
ensure

a and b and c ==> a and (b and c)
a and (b and c) ==> a and b and c
-- Note: ’and’ is left associative

end

3.1.5 Disjunction

The module boolean of the basic library offers the following declarations for
disjunction:

-- file: boolean.ali

10

(or) (a,b:BOOLEAN): BOOLEAN

all(a,b,c:BOOLEAN)
ensure

a ==> a or b -- introduction law

b ==> a or b -- "

a or b -- elimination law
==> (a ==> c)
==> (b ==> c)
==> c

end

The operator or is declared without definition. It has two introduction laws
which should be quite obvious and the elimination law.

The eliminiation law allows us to prove assertions by case split. Let’s assume
that we have the assertion a or b in the context and we want to prove some
goal c. Let’s further assume that we can prove the goal c under the assumption
of a (i.e. a ==> c) and we can prove the goal c under the assumption of b. Then
the goal certainly has to be valid because either a or b is valid.

What does the proof engine if it sees an disjunction of the form a or b

in the context? It does a partial specialization of the elimination law. The
specialization is partial because we have substitution values for a and b but not
for c. The partial specialization looks like

a or b ==> all(c) (a ==> c) ==> (b ==> c) ==> c

After this it applies the modus ponens law to get

all(c) (a ==> c) ==> (b ==> c) ==> c

into the context.
Note that a and b are no longer bound variables.

3.2 Boolean Logic

The Albatross base library has a module called boolean_logic which provides
to the user a lot of useful assertions for boolean expressions. In this chapter we
try to proof some useful facts abount boolean logic without using this module.

We just use the bare bone module boolean which provides us with the fol-
lowing declarations in its interface file:

immutable class BOOLEAN end

false: BOOLEAN
true: BOOLEAN
(==>) (a,b:BOOLEAN): BOOLEAN
(and) (a,b:BOOLEAN): BOOLEAN
(or) (a,b:BOOLEAN): BOOLEAN
(not) (a:BOOLEAN): BOOLEAN -> a ==> false
(=) (a,b:BOOLEAN): BOOLEAN -> (a ==> b) and (b ==> a)

11

all(a,b,c:BOOLEAN)
ensure

true

a = a

-- negation
(not a ==> false) ==> a -- indirect proof

-- conjunction
a and b ==> a -- and elimination
a and b ==> b
a ==> b ==> a and b -- and introduction

-- disjunction
a ==> a or b -- or introduction
b ==> a or b

a or b
==> (a ==> c)
==> (b ==> c)
==> c -- or elimination

end

We claim that these definitions and assertions are sufficient to prove all laws
of boolean logic.

All the following proofs are valid within a module with the header

-- file: boolean_playground.al

use alba.base.boolean end

...

3.2.1 Idempotence of Conjunction and Disjunction

Let us begin with the simple facts that a and a ==> a and a or a ==> a should
be valid in boolean logic. The first one is proved immediately by the proof engine
because it just applies the deduction rule to shift a and a into the context and
then uses the elimination rule to conclude a which proves the goal. For the
second one the proof engine gets stuck. It applies the deduction rule to shift
a or a into the context and then it partially specializes the elimination rule for
or to reach the state:

all(a:BOOLEAN)
require

a or a
proof

all(c) (a ==> c) ==> (a ==> c) ==> c -- (1)
... -- cannot continue

ensure
a

end

12

The proof engine has done all forward reasoning it can do. No backward
reasoning is possible because (1) is not a valid backward rule. Why is (1) not
a valid backward rule? A valid backward rule in Albatross has to satisfy the
following criteria:

1. It is an implication chain.

2. The final target of the implication chain contains all bound variables.

3. The final target is not a single variable.

The assertion (1) is an implication chain and the final target c contains all
bound variables (there is only one in this case). However the last condition is
not satisfied. But the assertion (1) is still a valid forward rule. The proof engine
needs just a little hint on how to specialize the first premise of the implication
chain. The expression a ==> a can be proved trivially (see last chapter) and
does the needed specialization. The complete proof:

all(a:BOOLEAN)
require

a or a
proof

a ==> a
ensure

a
end

This proof is a general pattern for exploiting disjunctions in the context.
Whenever we have an expression of the form a or b in the context and we want
to prove a goal g we have to prove the goal under the assumption a and we have
to prove the goal under the assumption b.

3.2.2 Ex Falso Quodlibet

The latin expression ex falso quodlibet translates to from a false assumption
everything can be concluded. This is a general law of boolean logic and should
be provable within Albatross. If we try to prove this law the proof engine gets
stuck again.

all(a:BOOLEAN)
require

false
proof

... -- cannot continue
ensure

a
end

The proof engine cannot conclude anything from false because there is no
implication which has false as a first premise. No backward reasoning starting
from the target is possible because the only potential assertion

all(a:BOOLEAN) (not a ==> false) ==> a

13

is not a valid backward rule (the final target is a single variable). We can use it
as a forward rule if we can prove its premise not a ==> false in the context. In
order to prove this we can shift not a into the assumptions and prove false. A
prove of false succeeds in this context, because false is already an assumption.
The complete proof:

all(a:BOOLEAN)
require

false
proof

not a ==> false
ensure

a
end

This proof demostrates a generic pattern to trigger the proof engine to prove
something by contradiction. We can even shorten the proof a little bit by writing

all(a:BOOLEAN)
require

false
proof

not not a
ensure

a
end

Why does this work? On trying to prove not not a the proof engine unfolds
the definition of not to get the new goal not a ==> false which it proves as
already explained. As soon as it has proved not not a it shifts it as proved into
the context and does forward reasoning. Unfolding of function definitions is
done in forward direction as well, therefore not a ==> false is shifted into the
context. Further forward reasoning leads to a which proves the goal.

Let’s for the moment be pedantic and list all steps done by the proof engine to
prove the ex false quodlibet law. In order to understand the backward reasoning
steps read from not not a upward. In oder to understand the forward reasoning
steps read from not not a downward.

all(a:BOOLEAN)
require

false
proof

require
not a

ensure
false

end -- deduction rule

not a ==> false -- function expansion

not not a -- entered by the user

not a ==> false -- function expansion

(not a ==> false) ==> a -- indirect proof rule

14

a -- modus ponens
ensure

a
end

3.2.3 De Morgan Laws

The De Morgan laws of logic express a certain connection between negation,
conjunction and disjunction.

not (a or b) = (not a and not b) -- (1)

not (a and b) = (not a or not b) -- (2)

Note the need of parentheses here because the boolean operators bind stronger
than the relational operator =. These laws are boolean equivalences. From the
definition of = we know immediately that for each equivalence we have to prove
two implications.

In Albatross we nearly never prove boolean equivalences directly. Instead
we prove the two associated implications. This has two reasons:

1. Having the two implications the proof engine can prove the equivalence
easily because it justs has to expand the definition of equivalence and
connect the result to the two implications (by using the introduction rule
of and).

2. Implications are very useful for backward and forward reasoning. A boolean
equivalence is nearly useless for the proof engine.

The same applies to conjunctions: Don’t prove them directly; better prove
the operands.

If we try to prove the first one and type

all(a,b:BOOLEAN)
require

not (a or b)
ensure

not a
not b

end

and start the Albatross compiler then the compiler succeeds without any com-
plaint. Let’s see the detailed steps of the proof engine to understand the success.

all(a,b:BOOLEAN)
require

not (a or b)
proof

a or b ==> false -- function expansion
-- forward reasoning stops here

require a
proof a or b -- needed premise for ’false’

15

ensure false end -- deduction law

a ==> false -- function expansion

require b
proof a or b -- needed premise for ’false’
ensure false end -- deduction law

b ==> false -- function expansion
ensure

not a
not b

end

To understand the detailed steps you have to read it downwards to a or b ==> false.
The rest you have to read from the goals upwards.

The second implication of (1) immediately succeeds as well.

all(a,b:BOOLEAN)
require

not a
not b

ensure
not (a or b)

end

Please try to understand the detailed steps before reading further.
For completeness we give the proofs of the two implications needed for (2).

all(a,b:BOOLEAN)
require

not (a and b)
proof

not not (not a or not b)
ensure

not a or not b
end

all(a,b:BOOLEAN)
require

not a or not b
proof

not a ==> not (a and b)
not b ==> not (a and b)

ensure
not (a and b)

end

The first one triggers a proof by contradiction. The second one uses the
elimination rule of or to do the job.

Now let us look at the famous tertium non datur or the law of the excluded
middle.

a or not a

We can prove this by triggering a proof by contradiction.

16

all(a:BOOLEAN)
proof

not not (a or not a)
ensure

a or not a
end

It is a little bit tricky to understand why this proof succeeds without more
hints. By expanding the function not and applying the deduction rule we get
not (a or not a) into the context with the new goal false. With the help of
the De Morgan law (1) in forward direction we get not a and not not a into the
context. Function expansion on the latter term yields not a ==> false. The
modus ponens law concludes from not a and not a ==> false the goal.

Exercises:

1. Prove the associativity law of (a or b) or c ==> a or (b or c). Hint:
Use the elimination law of disjunction more than once. Then make the
proof compact, i.e. throw out all intermediate steps which can be done by
the proof engine automatically.

2. Prove the law (not a ==> b) ==> a or b. Hint: Use the law of the ex-
cluded middle.

3.3 Important Modules of the Base Library

3.3.1 The Module ’any’

The class ANY declared in the module any is the base class for nearly all classes
(therefore the name), because it introduces equality.

The module any uses some important concepts of Albatross like deferred
classes, type variables, inheritance, deferred functions and assertions.

The interface file of the module any contains just a handful of declarations:

-- file: any.ali

use boolean end

deferred class ANY end

G: ANY

(=) (a,b:G): BOOLEAN deferred end

(/=) (a,b:G): BOOLEAN -> not (a = b)

all(a:G) deferred ensure a = a end

all(a:G) ensure a /= a ==> false end

immutable class boolean.BOOLEAN
inherit ANY end

17

The class ANY is a deferred class i.e. no objects of type ANY can be created.
A deferred class is meant to be inherited by other classes which implement the
deferred features and assertions.

Only deferred classes can have deferred functions and assertions.
The second declaration is the declaration of the type variable G. The scope

of a type variable is the module. A type variable has a concept. The concept
of the type variable G is ANY. I.e. in any places where the type variable G occurs
it can be replaced by any type which satisfies ANY i.e. which inherits from ANY.

The module declares the two functions = and /=. The function = is a deferred
function which has to be present in all descendants of the class ANY, either
declared in the descendant with a definition or redeclared as deferred. The
function /= has a definition.

Furthermore the module declares a deferred assertion which states reflexivity
of equality. Like deferred functions all deferred assertions have to be available
in any descendant.

The second assertion is effective (i.e. not deferred) which states that the
implementation file has a proof for this statement. This assertion is available
to all descendants of ANY for free.

The last statement is an inheritance statement. It states that the class
BOOLEAN of the module boolean can inherit ANY i.e. it has been successfully
verified that the class BOOLEAN has a reflexive equality function and therefore is
entitled to inherit from ANY the effective function /= and the effective assertion
stating that irreflexivity implies falsehood.

3.3.2 The Module ’predicate’

The concept of a predicate is very important in Albatross. A predicate is a
total boolean valued function over a certain type. All objects which satisfy a
predicate form a set. Therefore a predicate represents a set.

Let us look into the interface file of the module predicate to explain some
concepts.

-- file: predicate.ali

use any end

G: ANY

immutable class PREDICATE[G] end

(in) (a:G, p:G?): BOOLEAN
(/in) (a:G, p:G?): BOOLEAN -> not p(a)

(<=) (p,q:G?): ghost BOOLEAN -> all(x) p(x) ==> q(x)
(=) (p,q:G?): ghost BOOLEAN -> p <= q and q <= p

all(p:G?) ensure p = p end

immutable class PREDICATE[G]

18

inherit ghost ANY end

The module predicate uses the module any and since the module any uses
the module boolean the module predicate uses the module boolean implicitly.

For any type G inheriting ANY we can form the type PREDICATE[G]. Predi-
cates are used frequently in Albatross. Therefore the shorthand G? has been
introduced to be equivalent to PREDICATE[G].

The expression p(x) states that x satisfies the predicate p. The expression
x in p is equivalent.

The function <= defines the subset relation. A predicate/set p is a subset of
q if all elements of p occur in q as well.

The function <= has to be declared as a ghost function because it uses a
universally quantified expression in its definition.

Two sets are equal if they are mutually subsets. The equality function has
to be declared as ghost function as well because it uses another ghost function
in its definition.

The reflexivity of equality has been proved in the implementation file, there-
fore the class PREDICATE is entitled to inherit from the class ANY.

The inheritance relation has to be declared as ghost inheritance because the
equality function is present in the class PREDICATE only as a ghost function. As
a consequence all functions inherited from the class ANY are inherited as ghost
functions as well.

-- more declarations of the file ’predicate.ali’
0: G? = {x: false} -- empty set
1: G? = {x: true} -- universal set

singleton (a:G): G? -> {x: x = a} -- singleton set with one element
-- {a} is a shorthand for a.singleton

-- set union, intersection and difference
(+) (p,q:G?): G? -> {x: p(x) or q(x)}
(*) (p,q:G?): G? -> {x: p(x) and q(x)}
(-) (p,q:G?): G? -> {x: p(x) and not q(x)}

-- set complement
(-) (p:G?): G? -> {x: not p(x)}

-- union and intersection of a collection of sets
(+) (pp:G??): ghost G? -> {x: some(p) pp(p) and p(x)}
(*) (pp:G??): ghost G? -> {x: all(p) pp(p) ==> p(x)}

-- Leibniz rule
all(a,b:G, p:G?)

ensure
a = b ==> p(a) ==> p(b)

end

The empty and the universal set over a type are declared as constants.
Constants are defined by the equality operator and not by the arrow operator.

Albatross requires type annotations only at the top level and if the type
cannot be inferred from the context. The type of the bound variable x in

19

{x: true} can be inferred from the context because the declared constant has
type G? therefore the variable x has to have the type G.

An expression of the form {x: exp} is a predicate expression and the vari-
able x can occur in the expression exp. This predicate describes the set of all
objects x which satisfy the expression exp. The Albatross proof engine does
beta reductions of the form

a in {x: exp_x} -- or equivalent {x: exp_x}(a)

-- beta reduces to
exp_a -- all variables ’x’ in ’exp_x’ replaced by ’a’

in both forwards and backwards directions.
The function singleton is the first non-operator function used in this tuto-

rial. It has one argument. The most natural way to call this function is like
singleton(a). This form is called the functional notation. However Albatross
has an equivalent object oriented notation with a dot notation, extracting the
first argument and placing it as the target object, before the dot. Therefore the
expression a.singleton is an equivalent function call.

In order to support a more mathematical notation the abbreviation {a} has
been introduced. The language parser converts every expression of the form
{a,b,...} to a.singleton + b.singleton +

The following functions demonstrate that function names or operators do
not need to be unique in Albatross. Only the function name (operator name)
together with the signature has to be unique. Therefore - can be used as a
binary operator for set difference and as a unary operator for set complement.

The last declaration is the so called Leibniz rule of equality. The Leibniz
rule expresses a concept which is very important in Albatross. If two objects
are equal there is no possibility to distinguish them. The Albatross compiler
enforces this rule by not allowing any definition of equality which is not strong
enough to satisfy the Leibniz rule.

The Leibniz rule allows you to do rewritings. As soon as there is an equality
of the form a = b with specific a and b in the context the proof engine does a
partial specialization of the Leibniz rule and adds

all(p) p(a) ==> p(b)

to the context. How can you trigger rewritings using this rule? If you can prove
the assertion exp_a in which a occurs as a subexpression you can replace this
subexpression by a fresh variable x to get the expression exp_x. Now you can
form the predicate {x: exp_x} and the subexpression a certainly satisfies this
predicate, because you can prove exp_a. Now it is sufficient to state

b in {x: exp_x}

in a proof because the compiler recognizes all(p) p(a) ==> p(b) as a valid
backward rule and tries to prove a in {x: exp_x} which succeeds. After the
proof the proof engine forward closes the assertion b in {x: exp_x} by beta
reduction and adds exp_b to the context which is exp_a where the subexpression
a has been substituted by the subexpression b

20

3.4 Predicate Logic

In this chapter we proof some basic facts of predicate logic using only the mod-
ules boolean_logic and predicate of the base library. Note that the modules
boolean and any of the base library are used implicitely.

-- file: predicate_logic_playground.al

use
alba.base.boolean_logic
alba.base.predicate

end

Many of the proofs below can be found in the module alba.base.predicate_logic.
We use these proofs to demonstrate some important concepts of the Albatross
language and its proof engine.

3.4.1 Some Simple Theorems

Recall from the chapter 3.3.2 that 0 represents the empty set or the unsatisfiable
predicate and 1 represents the universal set. Evidently the empty set is a subset
of any other set and the universal set is a superset of any other set. I.e. we
want to be able to prove

0 <= p

p <= 1

for any predicate p. If we enter the assertion into our playground module we
get an assertions which is proved by the proof engine automatically.

all(p:G?)
ensure

0 <= p
p <= 1

end

What happens under the hood? Let us look at the first assertion and display
what the proof engine generates.

all(p:G?)
proof -- generated by the proof engine

all(x) -- entering and deduction rule
require

x in 0
proof

x in {x: false} -- ’0’ expanded
false -- beta reduction
all(a) a -- ex falso quodlibet

ensure
x in p -- trivially valid

end

all(x) x in 0 ==> x in p -- ’<=’ expanded
ensure

0 <= p
end

21

We have to read this proof first bottoms up. The proof engine looks at the
target 0 <= p and expands the definition. The new goal is a universally quanti-
fied expression. This is proved by entering it. Entering a universally quantified
goal means to generate a new context within which all bound variables are visi-
ble. The internal goal of the universally quantified expression is an implication,
therefore the deduction rule can be applied shifting the antecedent into the
context.

Now the proof engine can apply forward reasoning to the assumption x in 0.
The in operator cannot be expanded, because no definition is available. But the
right operand 0 has a defintion which can be unfolded resulting in x in {x:false}.
Then beta reduction can be applied to this expression putting false into the
context. Now the proof engine specializes the law ex falso quodlibet from the
module boolean_logic putting all(a) a into the context. Having this all goals
can be proved immediately.

At this point it might be interesting to understand the precise rules which
govern function expansion and beta reduction.

1. No functions are expanded in universally quantified expressions, implica-
tions and conjunctions.

2. If the expression has at the toplevel a function whose definition is available
it expands the definition (the function <= in the above example).

3. If the expression can be beta reduces at the toplevel then beta reduction
is done.

4. If the expression has at the top a function with no definition available all
definitions below are expanded recursively.

The expression x in 0 is expanded to x in {x:false} because no definition
is available for the in operator and the constant 0 has a definition. If there
were available a definition for the in operator then the subterm 0 would not be
expanded.

The same applies to beta reductions. If a beta reduction is possible at the
top then no definitions nor beta reductions in inner subterms are applied.

Exercise: Explain how the proof engine proves the assertions

p <= 1
p * (-p) = 0
p + (-p) = 1

3.4.2 Singleton Sets

A singleton set is a set with one element e.g. {a}. Note that {a} is just a
shorthand for singleton(a) which has the definition {x: x=a}.

A singleton set has one element and therefore cannot be empty. We should
be able to prove

{a} /= 0

22

This goal is expanded to {a} = 0 ==> false, the antecedent is shifted into the
context and false is used as a new goal. With the antecedent in the context
the proof engine starts forward resoning by entering the following expressions
into the context:

{a} = 0
{a} <= 0
0 <= {a}
all(x) x in {a} ==> x in 0
all(x) x in 0 ==> x in {a}

Now no rule can be applied for backward reasoning and the proof engine cannot
continue to prove the goal false.

We need to give the proof engine a hint on how to continue. If we look the
result of forward reasoning we discover that x in 0 for any x would do the job.
0 could be expanded and betareduction would resolve the goal. I.e. we need
some x which is in {a}. Clearly a is in {a}. Now we have the missing link and
can formulate a complete proof.

all(a:G)
proof

a in 0 ==> false
ensure

{a} /= 0
end

3.4.3 Leibniz Equality and Term Rewriting

The module predicate of the base library asserts the Leibniz rule of equality.

-- from the module ’predicate’
all(a,b:G, p:G?)

ensure
a = b ==> p(a) ==> p(b)

end

This rule states that equal objects cannot be distinguished by any property, i.e.
if a has a certain property then b has it as well.

As already explained in the chapter 3.3.2 we can use the Leibniz rule to
do term rewritings. Here we use the Leibniz rule to prove the symmetry and
transitivity of equality i.e. we want to prove the laws

a = b ==> b = a -- symmetric

a = b ==> b = c ==> a = c -- transitive

Let’s look first at symmetry. The proof engine applies the deduction rule
and shifts a = b into the context. Having this it can partially specialize the
Leibniz rule to get all(p) p(a) ==> p(b) into the context. No more forward
nor backward steps are possible and the proof engine cannot continue.

The goal is b = a. If we want to explore the Leibniz rule we have to express
this a property applied to b. The expression b in {a} will do the job because
this expression expanded yields the goal b = a. The proof engine can proof
b in {a} by using the partially specialized Leibniz rule as a backward rule.

23

all(a,b:G)
require

a = b
proof

b in {a}
ensure

b = a
end

In proving transitivity the proof engine shifts the two antecedents into the
context and forward closes it by doing partial specialization of the Leibniz rule.
The context for the goal a = c looks like

a = b
b = c
all(p) p(a) ==> p(b)
all(p) p(b) ==> p(c)

Because we have already proved the symmetry of equality the proof engine can
do some backward reasoning and try to prove c = a instead of a = c. We can
express the latter by the equivalent expression c in {a}. This expression can be
proved by the engine by using the partially specialized Leibniz rules and doing
backward reasoning reaching at a in {a} which is proved trivially.

all(a,b,c:G)
require

a = b
b = c

proof
c in {a}

ensure
a = c

end

Having proved the transitivity of an operator the proof engine is able to
follow transitivity chains. The following proof discharges automatically.

all(a,b,c,d,e:G)
require

a = b
b = c
c = d
d = e

ensure
a = e

end

3.4.4 Existential Quantification

An existential quantified expression in Albatross looks like

some(x,y,...) expression

where the expression contains the variables x,y,.... The proof engine of Al-
batross has two hardwired procedures to handle existentially quantified expres-
sions.

24

Introduction rule: If the goal of a proof is an existentially quantified expres-
sion it looks for witnesses i.e. it tries to find expressions in the context with
specific values for the variables so that the expression with the specific values
is valid. If there are witnesses then the existentially quantified expression is
proved.

Elimination rule: Whenever an existentially quantified expression is entered
into the context, the proof engine enters the following assertions into the context.

all(c) (all(x,y,...) expression ==> c) ==> c

The introduction rule is immediately evident. The elimination rule mimics
the following mathematical proof technique:

We know that there is some x which satisfies p. Let a be an arbitrary
value satisfying p. From a satisfying p we conclude c. Therefore c is
valid.

We use these laws to prove that every set which has elements is nonempty
and every nonempty set has elements i.e.

some(x) x in p ==> p /= 0

p /= 0 ==> some(x) x in p

For the first one the proof engine ends up in the following context/goal pair and
then gets stuck.

some(x) x in p

all(c) (all(x) x in p ==> c) ==> c

p = 0 -- (1)

p <= 0

all(x) x in p ==> x in 0 -- (2)
...
==================================
false

Now we have to give the proof engine a hint how to substitute c so that
all(x) x in p ==> c can be proved in the context and c implies a contradiction
within the context. We note that we can substitute anything for c because (2)
guarantees that with x in p in the context we get an immediate contradiction
and can prove anything. A good choice for c is p /= 0 because together with
(1) we get the needed contradiction to prove false. The complete proof:

all(p:G?)
require

some(x) x in p
proof

all(x) x in p ==> p /= 0
ensure

p /= 0
end

25

Now the other direction p /= 0 ==> some(x) x in p. With this goal the proof
engine becomes stuck very fast. It just enriches the context by expanding /=

and then not and finds nothing more to continue. We cannot find any way to
generate a witness for the existentially quantified expression. If all else fail we
can try a proof by contradiction i.e. we add the negated goal to the context and
try to derive false from it. Lets see the steps the proof engine would do.

all(p:G?)
require

p /= 0
not some(x) x in p

proof
p = 0 ==> false
(some(x) x in p) ==> false

all(x)
require

x in p
proof

some(x) x in p
false

ensure
x in 0

end
p <= 0
p = 0

ensure
false

end

First it does forward reasoning on the two assumptions and gets two implica-
tions into the context which have false as a target. Then uses the first in a
backward reasoning step with the new goal p = 0. For this goal in has to prove
all(x) x in p ==> x in 0. It enters it and realizes that it needs a further con-
tradiction to prove it. Then it uses the second implication and gets the new
goal some(x) x in p. This goal can be resolved immediately because there is a
witness in the context.

The only thing needed by the proof engine is a trigger to start a proof by
contradiction. Therefore the following proof is complete.

all(p:G?)
require

p /= 0
proof

not not some(x) x in p
ensure

some(x) x in p
end

3.5 Using and Proving Abstractions

In this chapter we show how to use deferred classes to create abstractions.
Abstractions are very useful because they allow us to define functions based

26

on some deferred functions and to prove assertions based on some deferred
assertions.

The inheritance mechanism of Albatross is a powerful reuse mechanism.
All classes which inherit from an abstraction get all functions defined in the
abstraction and all assertions proved in the abstraction for free.

We demonstrate the concepts by creating an abstraction for partial orders
and linear orders. The base library already has these abstractions. In this
chapter we create some simplified versions of the abstractions in the base library.
After having read this chapter it might be interesting to read the versions in
the base library.

3.5.1 Partial Order

In mathematics a partial order is a set with a binary relation which is reflexive,
antisymmetric and transitive.

It is easy to model such an abstraction in Albatross.

-- file: partial_order.al
use alba.base.predicate end

deferred class PARTIAL_ORDER end

PO: PARTIAL_ORDER

(=) (a,b: PO): BOOLEAN deferred end
(<=) (a,b: PO): BOOLEAN deferred end
(<) (a,b: PO): BOOLEAN -> a <= b and a /= b
(>=) (a,b: PO): BOOLEAN -> b <= a
(>) (a,b: PO): BOOLEAN -> b < a

all(a,b,c:PO)
deferred ensure

a = a
a <= a -- reflexivity
a <= b ==> b <= a ==> a = b -- antisymmetry
a <= b ==> b <= c ==> a <= c -- transitivity

end

deferred class PARTIAL_ORDER inherit ANY end

The transitivity of the >= operator is trivial to prove

all(a,b,c:PO)
require

a >= b
b >= c

ensure
a >= c

end

Let’s understand why this proof succeeds. After shifting the assumptions
into the context the proof engine forward closes the context. Forward closing
includes expansion of functions. Therefore after shifting the assumptions the
context consists of

27

a >= b; b >= c -- assumptions

b <= a -- function expansion

c <= b -- function expansion

all(x) b <= x ==> c <= x -- partial specialization of transitivity

...

Now the proof engine tries to prove the goal. It cannot prove it immediately.
Therefore it searches for and generates backward rules. Generation of backward
rule includes function expansion. The expanded goal is c <= a. The expanded
goal matches the conclusion of the partial specialization and therefore backward
reasoning can continue. The substituted premise is already in the context and
therefore the proof succeeds.

This little proof is a nice demonstration how forward and backward reasoning
work hand in hand and that the proof engine can do many detailed steps which
would be very tedious to do them by hand.

The < operator should be transitive as well. However the proof engine fails
to prove the transitivity without help.

all(a,b,c:PO)
require

a < b; b < c
ensure

a < c -- PROOF FAILS!
end

Let’s see the result of forward reasoning after shifting the assumptions

a <= b
a /= b
a = b ==> false
b <= c
b /= c
b = c ==> false
...

Backward reasoning generates the following subgoals

require a = c
proof ...
ensure false end

a = c ==> false
a /= c
a <= c -- proved by transitivity of ’<=’
a < c

I.e. the proof can succeed if the assumption of a = c leads to falsehood. In
order to prove falsehood the proof engine generates the subgoals

...
b <= c
c <= b
b = c
false

28

Now it might be clear what the missing link is. The proof engine cannot prove
c <= b. However we have a <= b and a = c in the context. If we trigger a term
rewrite of the first by the second one we get c <= b into the context and the
proof succeeds. Term rewriting can be triggered by applying the Leibniz rule
(see chapter on the module predicate).

The following successfully proves the transitivity of <.

all(a,b,c:PO)
require

a < b
b < c

proof
require

a = c
proof

c in {x: x <= b}
ensure

false
end

ensure
a < c

end

Note that the proof engine needs just a little hint on how to conclude falsehood
from the assumption a = c. It is sufficient to provide this hint. The detailed
steps, which are numerous, are filled in by the proof engine.

In the base library we have already an example of a class which satisfies
the requirements of a partial order. The subset relation defined in the module
predicate is certainly reflexive, antisymmetric and transitive.

We can prove this conjecture by

G: ANY

all(p,q,r:G?)
ensure

p <= p

p <= q ==> q <= p ==> p = q

p <= q ==> q <= r ==> p <= q
end

By using function expansion and applying the basic techniques already seen in
this tutorial it is evident that the proof engine proves these claims successfully.

Having reflexivity, antisymmetry and transitivity of the subset relation we
can state that the class PREDICATE is entitled to inherit the class PARTIAL_ORDER.

immutable class
predicate.PREDICATE[G]

inherit
ghost PARTIAL_ORDER

end

Now the class PREDICATE inherits all functions defined in this module (<,>=,<)
and all assertions proved in this module.

29

But in order to see that the abstraction is really useful we need more clients
which use it. In the next chapter we will see another class which can inherit
from a partial order.

But before using the module we have to create an interface file for it. We
don’t show the interface file here because looking at the interface files already
shown here it should be clear what it has to contain.

3.5.2 Linear Order

A linear order is the special case of a partial order where all elements are com-
parable.

-- file: linear_order.al
deferred class LINEAR_ORDER end

LO: LINEAR_ORDER

(=) (a,b:LO): BOOLEAN deferred end
(<=) (a,b:LO): BOOLEAN deferred end

all(a,b,c:LO)
deferred ensure

a = a

a <= b or b <= a

a <= b ==> b <= a ==> a = b

a <= b ==> b <= c ==> a <= c
end

deferred class LINEAR_ORDER inherit ANY end

Note that we have not included reflexivity because reflexivity is a conse-
quence of these deferred assertions.

all(a:LO)
proof

a <= a or a <= a
ensure

a <= a
end

Now we have enough evidence to state that a linear order is a special case
of a partial order which is stated as an inheritance relation in Albatross

deferred class
LINEAR_ORDER

inherit
PARTIAL_ORDER

end

In a partial order pairs of elements can be unrelated. In a linear order this
cannot happen. This is the content of the second deferred assertion.

Therefore if we know that not (a <= b) holds we must be able to conclude
b < a. In order to prove this conclusion we have to prove b <= a and b /= a.

30

The first one is a consequence of the fact that pairs are always related by <=

and if one relation does not hold then the other must hold. The second one can
be proved by showing the assumption b = a leads to a contradiction.

all(a,b:LO)
require

not (a <= b)
proof

a <= b or b <= a

require b = a
proof a in {x: x <= b}
ensure false end

ensure
b < a

end

Note that we used the Leibniz rule to rewrite the assertion b <= b to a <= b

which contradicts the assumption.
We want to prove as well that not (a < b) leads to b <= a. We use a proof

by contradiction i.e. we assume that the conclusion does not hold. From the last
assertion we know that this leads to a < b which contradicts the assumption.

all(a,b:LO)
require

not (a < b)
proof

require not (b <= a)
proof a < b
ensure false end

ensure
b <= a

end

In a linear order two different elements have to be related in the strict order
relation <.

all(a,b:LO)
require

a /= b
proof

require
not (a < b) -- implies b <= a

ensure
b < a

end
ensure

a < b or b < a
end

3.6 Inductive Data Types

Using inductive data types is a very powerful way to define the structure of
data. Functional languages or languages with a strong functional component

31

like Ocaml, Haskell, FSharp, Swift, Coq, etc. use inductive data types as its
central concept to define data. Inductive data types are also known as algebraic
data types.

3.6.1 Basics of Inductive Types

A very simple inductive type is an enumeration type. To define a type which
represents a day of the week we can use the declaration

case class
DAY

create
monday
tuesday
wednesday
thursday
friday
saturday
sunday

end

The keyword case tells the compiler that an inductive type is being declared.
Each inductive type has a list of constructors which consists at least of one
element. The above type has one constructor for each day of the week.

Pattern matching can be used to define a function which maps each weekday
to its next weekday.

next (d:DAY): DAY
-> inspect d

case monday then tuesday
case tuesday then wednesday
case wednesday then thursday
case thursday then friday
case friday then saturday
case saturday then sunday
case sunday then monday
end

The Albatross compiler can use pattern matching within proofs to do term
rewriting. E.g. it can rewrite the term next(monday) to tuesday. We can use
this feature to prove the following assertions:

all ensure
next(sunday) = monday

sunday.next.next.next = wednesday
end

Note that in Albatross the terms f(x) and x.f are equivalent. The object
oriented notation is more convenient for iterated function applications because
nested parentheses can be avoided.

The compiler generates for each inductive type an equality function. There-
fore the expressions in the previous proof are well typed. Furthermore each
inductive type automatically inherits ANY.

32

The compiler guarantees that two objects created with different constructors
are different. I.e. the following assertions are generated by the compiler.

all ensure
-- generated by the compiler

monday = tuesday ==> false
tuesday = wednesday ==> false
... -- all other possible combinations

end

These inversion laws can help us to do proofs by contradiction.
Inductive types can contain data. An inductive type can be declared which

has an optional element and an inductive type can be declared which has a list
of elements.

G: ANY

case class
OPTION[G]

create
none
value (item:G)

end

case class
LIST[G]

create
[]
(ˆ) (head:G, tail:LIST[G])

end

The compiler generates automatically deconstructors for inductive types
with data. For the above types the following functions are generated.

item (o:OPTION[G]): G -- generated by the compiler
require

o as value(_)
ensure

Result = inspect o
case value(v) then v
end

end

head (l:LIST[G]): G -- generated by the compiler
require

l as _ˆ_ -- ’_’ is an unnamed variable
ensure

Result = inspect l
case h ˆ _ then h
end

end

tail (l:LIST[G]): LIST[G] -- generated by the compiler
require

l as _ˆ_
ensure

Result = inspect l
case _ ˆ t then t

33

end
end

The boolean expression o as value(_) tests if the object o has been con-
structed with the constructor value. The underline character _ is used for
variables whose name is not interesting.

Clearly all these functions need preconditions because the used pattern
matching in the definition of the functions is not complete. You cannot ex-
tract an element if the optional has been constructed with none and you cannot
get neither the head nor the tail of an empty list.

3.6.2 Recursion and Induction

Natural numbers can be declared with an inductive type.

case class
NATURAL

create
0
successor(predecessor:NATURAL)

end

This definition says that a natural number is either 0 or the successor of
some other natural number which is called its predecessor. There are no other
possibilities to construct natural numbers.

The addition of two natural numbers can be defined recursively.

(+) (a,b:NATURAL): NATURAL
-> inspect b

case 0 then a
case successor(n) then (a + n).successor
end

Albatross allows only recursive calls which are sound i.e. whose termination
is guaranteed. Therefore the recursion checker of the Albatross compiler checks
two things for a recursive call:

• At least one argument of the recursive call has to be structurally smaller
than the original argument.

• The recursive call has to be within a branch.

The above definition of the function + satisfies both criteria. The argument
n is the predecessor of the argument b of the original call and the call occurs
within a case branch of an inspect expression.

The first criterion is needed to guarantee that the execution of the function
at runtime terminates. The second one is needed to guarantee that unfolding
definitions at compile time is guaranteed to terminate because the compiler
unfolds definitions outside of branches arbitrarily and within branches only if it
can prove that the branch is entered.

In order to prove properties of recursive functions we need an induction law.
The compiler generates for all inductive types an induction law. Examples:

34

all(p:DAY?) -- generated by the compiler
require

p(monday); p(tuesday); p(wednesday)
p(thursday); p(friday)
p(saturday); p(sunday)

ensure
all(d) d in p

end

In order to prove that all days of the week satisfy a certain property we have
to prove that monday satisfies the property, tuesday satisfies the property, ...,
and sunday satisfies the property.

all(p:OPTION[G]?) -- generated by the compiler
require

none in p
all(v) value(v) in p

ensure
all(o) o in p

end

In order to prove that all objects with an optional element satisfy a certain
property we have to prove that none satisfies the property and that for all values
v the object value(v) satisfies the property.

We see that for each constructor we get a premise to satisfy in order to prove
that all objects satisfy the property.

Now let us look at lists which have one recursive constructor (ˆ) which needs
an already constructed list to construct a new list by prepending a head element
in front of the list. For lists we get the induction principle

all(p:LIST[G]?) -- generated by the compiler
require

[] in p
all(h,a) a in p ==> hˆa in p

ensure
all(a) a in p

end

We see that each constructor gets a premise to satisfy. However the recursive
constructor gets a premise with an induction hypothesis.

Let us express the induction law in words in order to understand it.
In order to prove that all lists satisfy a certain property we have to prove

that the empty list satisfies the property and for all elements and lists it has to
be shown: If the list satisfies the property then the list with the new element in
front satisfies the property as well.

Since all lists have to be constructed with one of the constructors only list
which satisfy the property can be constructed.

The generated induction principle for natural numbers is very similar to the
one generated for lists.

all(p:NATURAL?) -- generated by the compiler
require

0 in p
all(n) n in p ==> n.successor in p

35

ensure
all(n) n in p

end

Since the constructor successor is recursive (i.e. it needs a natural number to
construct a new one) the premise which corresponds to this constructor gets an
induction hypothesis as well.

There remains one little detail. The proof engine of Albatross bubbles up
all universal quantifiers which appear in the conclusion of a law i.e. for natural
numbers the compiler generates the induction principle in the form

all(p:NATURAL?, n:NATURAL) -- generated by the compiler
require

0 in p
all(n) n in p ==> n.successor in p

ensure
n in p

end

which is equivalent to the former presentation (Note that the variable n does
not occur free in the premises). In this form the proof engine can work with it
more systemtically.

Now let’s see how to prove some properties of addition by using the induction
law of natural numbers.

If the declared type NATURAL correponds to our intuitive notion of natural
numbers we should be able to prove 0 + a = a for all natural numbers a. We
generate the proof step by step in all details.

In order to use the induction principle we need a property i.e. a predicate
over natural numbers. Since there is only one variable there is no choice.

a in {a: 0 + a = a}

This expression if obviously equivalent to our goal. But in this form it matches
the conclusion of the induction law. The template of the proof by induction
looks like

all(a:NATURAL)
proof

...
0 in {a:NATURAL: 0 + a = a} -- explicit type to avoid

-- ambiguities
all(n:NATURAL)

require
n in {a: 0 + a = a}

proof
0 + n = n
...
0 + n.successor = n.successor

ensure
n.successor in {a: 0 + a = a}

end

a in {a: 0 + a = a}
ensure

0 + a = a
end

36

The induction start is verified by the proof engine by making the following
backward steps:

-- read bottoms up
0 = 0 -- reflexivity of ’=’

0 + 0 = 0 -- apply function ’+’

0 in {a:NATURAL: 0 + a = a} -- substitute ’a’ by ’0’

The induction step is verified by backward reasoning as well.

-- read bottoms up
n.successor = n.successor -- reflexivity of ’=’

(0 + n).successor = n.succesor -- use induction hypothesis

0 + n.successor = n.successor -- apply function ’+’

n.successor in {a: 0 + a = a} -- substitute ’a’ by n.successor

Note that nearly all steps presented for this proof are done automatically by
the proof engine. The proof engine needs just a hint to do a proof by induction.
Therefore the following minimal version of the proof is sufficient.

all(a:NATURAL)
proof

0 in {a:NATURAL: 0 + a = a}
a in {a:NATURAL: 0 + a = a}

ensure
0 + a = a

end

This is the standard form of a proof by induction where the proof engine
receives just a trigger to apply the induction law and can do the rest of the
work alone. The first assertion is proved trivially and after the proof forward
reasoning puts the following partial specialization of the induction law into the
context

all(n)
(all(n) n in {a:NATURAL: 0 + a = a}

==> n.successor in {a:NATURAL: 0 + a = a})
==>
n in {a:NATURAL: 0 + a = a}

The second assertion matches the target of this partial specialization and can
therefore trigger backward reasoning which succeeds automatically as demon-
strated above.

Let’s come to the next law of addition: associativity. In order to prove it
the proof engine needs just a hint to apply the induction law.

all(a,b,c:NATURAL)
proof

0 in {c: (a + b) + c = a + (b + c)}
c in {c: (a + b) + c = a + (b + c)}

ensure
(a + b) + c = a + (b + c)

end

37

It might be interesting for the reader to prove this assertion in the same
manner as the proof engine.

The proof of commutativity of addition (i.e. a + b = b + a) is little bit more
complex. Again we trigger the induction law to get the partially finished proof:

all(a,b:NATURAL)
proof

...
0 in {b: a + b = b + a}

all(b)
require

b in {b: a + b = b + a}
proof

a + b = b + a
...
(a + b).successor = b.successor + a
a + b.successor = b.succesor + a

ensure
b.successor in {b: a + b = b + a}

end

b in {b: a + b = b + a}
ensure

a + b = b + a
end

Now look at the induction start. The proof engine tries backward reasoning

-- read bottoms up
a = 0 + a -- proof engine cannot continue!!

a + 0 = 0 + a -- apply ’+’ to the left hand side

0 in {b: a + b = b + a} -- substitute ’b’

Why is the proof engine stuck here? We have already proved the law
0 + a = a and from the module predicate_logic we know that = is symmet-
ric. The problem: The above presented backward steps are not completely
correct. When the proof engine sees a + 0 = 0 + a it unfolds definitions until
no more unfolding is possible. Therefore we do not get a = 0 + a as a goal
because the addition can still be unfolded. Instead we get

a = inspect a
case 0 then 0
case successor(n) then (0 + n).successor
end

Unfortunately this goal cannot be resolved. We have to tell the proof engine to
use 0 + a = a as a simplification. We do this by writing

proof 0 + a = a
ensure 0 in {b: a + b = b + a} end

Now the proof engine can do the following backward reasoning steps:

-- read bottoms up
a = a -- proved by reflexivity of ’=’

38

a + 0 = a -- apply ’+’ to the left hand side

a + 0 = 0 + a -- apply simplification

0 in {b: a + b = b + a} -- substitute ’b’

Now we have to look at the unfinished induction step.

a + b = b + a
...
(a + b).successor = b.successor + a

The first term can be transformed via the induction hypothesis into

(a + b).successor = (b + a).successor -- induction hypothesis
(b + a).successor = b + a.successor -- apply ’+’ to right hand side

Now the remaining missing link is

...
b + a.successor = b.successor + a

Unfortunately this statement cannot be proved directly it needs an own proof
by induction. If we try induction on a we get the induction step

b + a.successor = b.successor + a
...
(b + a.successor).successor = (b.successor + a).successor
b + a.successor.successor = b.successor + a.successor

which succeeds trivially by applying the induction hypothesis. It is good practive
to separate out this proof.

all(a,b:NATURAL)
-- lemma

proof
0 in {a: b + a.successor = b.successor + a}
a in {a: b + a.successor = b.successor + a}

ensure
b + a.successor = b.successor + a

end

Having this lemma the proof of commutativity of addition can be completed.

all(a,b:NATURAL)
proof

proof 0 + a = a
ensure 0 in {b: a + b = b + a} end

all(b)
require

a + b = b + a
proof

a + b.successor = (a + b).successor -- apply ’+’
(a + b).successor = (b + a).successor -- induction

-- hypothesis
(b + a).successor = b + a.successor -- apply ’+’
b + a.successor = b.successor + a -- lemma

ensure

39

a + b.successor = b.successor + a
end

b in {b: a + b = b + a}
ensure

a + b = b + a
end

In this proof just the essential steps have been kept and nearly all steps
which can be done by the proof engine automatically have been left out. This
has the advantage that we not only have a proof which can be formally checked
but also a proof which presents all important steps to the reader.

3.6.3 Inversion and Injection Laws

Work in progress.

3.6.4 Binary Tree

A binary tree is either empty (i.e. a leaf) or it contains an information ele-
ment and a left and a right subtree. A corresponding declaration in Albatross
formalizes this informal description.

case class
BINARY_TREE[G]

create
leaf
tree (info:G, left,right:BINARY_TREE[G])

end

The generated induction principle is

all(p:BINARY_TREE[G]?, t:BINARY_TREE[G])
require

leaf in p

all(i,l,r) l in p ==> r in p ==> tree(i,l,r) in p
ensure

t in p
end

We write a function to mirror a binary tree as a recursive function

(-) (t:BINARY_TREE[G]): BINARY_TREE[G]
-> inspect t

case leaf then leaf
case tree(i,l,r) then tree(i,-r,-l)
end

The mirroring of a tree should be an involution i.e. mirroring a tree twice
should return the original tree. This assertion can be proved by induction.

all(t: BINARY_TREE[G])
proof

leaf in {t: t = - (- t)}

40

all(i,l,r)
require

l = - (- l)
r = - (- r)

ensure
tree(i,l,r) = - (- tree(i,l,r))

end

t in {t: t = - (- t)}
ensure

t = - (- t)
end

We have used three intermediate assertions to prove the goal. For the proof
engine the second is unnecessary. It has been added here for documentation
purposes.

As a next step we define a recursive function which calculates the inorder
sequence of a tree.

-- note: for the following we assume that the module ’list’ of the
-- base library is used in the current module!

inorder (t:BINARY_TREE[G]): [G]
-> inspect t

case leaf then []
case tree(i,l,r) then l.inorder + i ˆ r.inorder
end

In words: The inorder sequence of an empty tree is the empty list. The
inorder sequence of a nonempty tree is the inorder sequence of the left subtree
concatenated with info-prefixed inorder sequence of the right subtree.

Note that we use the module list of the base library. It has the same
declaration as the list of the previous chapters. However since lists are used
very frequently the type LIST[G] of the basic libary can be abbreviated with
[G].

Furthermore the parser of the Albatross language converts every expression
of the form [a,b,...z] to aˆbˆ...ˆzˆ[] . This mechanism is a pure macro
facility i.e. it works for any type which declares a constant [] and a binary
operator ˆ (provided that the expanded expression passes the type checker).

The module list of the base library provides a lot of functions and proves
a lot of useful assertions. In the following we use the following functions and
assertions.

-- from the module ’alba.base.list’

(+) (a,b:[G]): [G]
-- The concatenation of the lists ’a’ and ’b’

-> inspect a
case [] then b
case hˆt then hˆ(t + b)
end

(-) (a:[G]): [G]
-- The mirrored list ’a’

41

-> inspect a
case [] then []
case hˆt then - t + [h]
end

all(a,b,c:[G])
ensure

(a + b) + c = a + (b + c) -- associative

(- (a + b)) = -b + -a -- mirror concatenation

a = - (- a) -- involution
end

What is the inorder sequence of a mirrored tree? Obviously the mirrored
inorder sequence of the original tree. The following assertion proves this claim.

all(t:BINARY_TREE[G])
proof

leaf in {t: (-t).inorder = - t.inorder}

all(i:G, l,r:BINARY_TREE[G])
require

(-l).inorder = - l.inorder
(-r).inorder = - r.inorder

proof
(-tree(i,l,r)).inorder -- unfold definitions

= -r.inorder + ([i] + -l.inorder)

(-r).inorder + ([i] + -l.inorder) -- associativity
= ((-r).inorder + [i]) + -l.inorder

((-r).inorder + [i]) + -l.inorder -- unfold definition
= -iˆr.inorder + -l.inorder

(-iˆr.inorder) + -l.inorder -- mirror concatenation
= - (l.inorder + i ˆ r.inorder)

(- (l.inorder + i ˆ r.inorder)) -- unfold definition
= - tree(i,l,r).inorder

ensure
(-tree(i,l,r)).inorder = - tree(i,l,r).inorder

end

t in {t: (-t).inorder = - t.inorder}
ensure

(-t).inorder = - t.inorder
end

Note how a proof expressed in this form serves two purposes. (1) It can be
formally verified by the proof engine. (2) It provides enough information for the
human reader to convince him that the proof is correct.

3.6.5 List Sorting

In this chapter we develop a verified insertion sort algorithm for lists. For the
verification of the algorithm we use some functions and theorems of the module

42

list of the base library. For completeness the used functions and theorems are
listed here.

-- from the module ’alba.base.list’
G: ANY

size (a:[G]): NATURAL
-> inspect a

case [] then 0
case hˆt then t.size.successor
end

(in) (x:G, a:[G]): BOOLEAN
-- Is the element ’x’ contained in the list ’a’?

-> inspect a
case [] then false
case hˆt then x=h or x in t
end

all_in (a:[G], p:G?): BOOLEAN
-- Do all elements of the list ’a’ satisfy the predicate ’p’?

-> inspect a
case [] then true
case hˆt then h in p and t.all_in(p)
end

all_in (a,b:[G]): BOOLEAN
-- Are all elements of the list ’a’ contained in the list ’b’?

-> a.all_in(elements(b))

same_elements (a,b:[G]): BOOLEAN
-- Have the lists ’a’ and ’b’ the same elements

-> a.all_in(b) and b.all_in(a)

permutation (a,b:[G]): ghost BOOLEAN
-> a.size = b.size and same_elements(a,b)

all(a:[G], p,q:G?)
ensure

x in a ==> a.all_in(p) ==> x in p
a.all_in(b) ==> b.all_in(p) ==> a.all_in(p)
a.all_in(p) ==> p <= q ==> a.all_in(q)

permutation(a,a)
permutation(a,b) ==> permutation(b,a)
permutation(a,b) ==> permutation(b,c) ==> permutation(a,c)
permutation(xˆyˆa, yˆxˆa)
permutation(a,b) ==> permutation(xˆa,xˆb)

end

The sorting code we develop in this chapter need some modules of the base
library.

use
alba.base.boolean_logic
alba.base.predicate_logic

43

alba.base.linear_order
alba.base.list

end

In an implementation file it is usually convenient to use the modules for
boolean logic and predicate logic because they provide us with many useful
laws of logic. We need a linear order because only list of elements which have
a linear order can be sorted. Furthermore we use the lists of the base library
because we want to sort lists.

Before trying to write a search function we need to define what it means for
a list to be sorted and the properties which sorted lists have. First we define a
function which tells whether an element is less than or equal all elements in the
list.

L: LINEAR_ORDER

is_lower_bound (x:L, a:[L]): BOOLEAN
-> a.all_in({y: x <= y})

This lower bound function has the following transitivity property:

all(x,y:L, a:[L])
-- transitivity

require
x <= y
y.is_lower_bound(a)

proof
{z: y <= z} <= {z: x <= z}

ensure
x.is_lower_bound(a)

end

Furthermore we expect that a lower bound for a list is a lower bound for
any permutation of the list.

all(x:L, a,b:[L])
require

x.is_lower_bound(a); permutation(a,b)
ensure

x.is_lower_bound(b)
end

Fortunately the proof engine accepts this assertion without any intervention.
It just expands the definitions of lower bounds and permutations.

Now we have to define the notion of a sorted list. The empty list and the one
element list are always sorted. A list having more than one element is sorted if
the first two elements are sorted and the tail of the list is sorted.

is_sorted (l:[L]): BOOLEAN
-> inspect l

case [] then true -- empty list
case xˆt then

inspect t
case [] then true -- one element list
case yˆa then x <= y and t.is_sorted
end

end

44

Note: Nested inspect expressions are needed because of a restriction
in the version 0.2 of the compiler. In future versions a more readable
equivalent expression can be used.

inspect l
case [] then true
case [_] then true
case xˆyˆt then x <= y and (yˆt).is_sorted
end

Now let us think a moment about properties which sorted lists should have.

• The tail of a sorted nonempty list should be sorted.

• The head of a sorted list should be a lower bound for the tail of the list.

• If a list is sorted then any lower bound of the list prepended should result
in a sorted list as well.

These three properties can be proved by induction by just telling the proof
engine that we want a proof by induction.

all(x:L, a:[L])
proof

[] in {a: (xˆa).is_sorted ==> a.is_sorted}
a in {a: (xˆa).is_sorted ==> a.is_sorted}

ensure
(xˆa).is_sorted ==> a.is_sorted

end

all(x:L, a:[L])
proof

[] in {a: all(x) (xˆa).is_sorted ==> x.is_lower_bound(a)}
a in {a: all(x) (xˆa).is_sorted ==> x.is_lower_bound(a)}

ensure
(xˆa).is_sorted ==> x.is_lower_bound(a)

end

all(x:L, a:[L])
require

x.is_lower_bound(a)
a.is_sorted

proof
[] in {a: x.is_lower_bound(a)

==> a.is_sorted
==> (xˆa).is_sorted}

a in {a: x.is_lower_bound(a)
==> a.is_sorted
==> (xˆa).is_sorted}

ensure
(xˆa).is_sorted

end

Note that in the second assertion the universal quantification over the ele-
ments x has been shifted into the predicate for the induction proof. It is evident

45

that the proof, if succeeds, implies the wanted assertion. But this stronger pred-
icate for the induction proof results in a stronger induction hypothesis (because
it is universally quantified over the head element). With the stronger induction
hypothesis the proof succeeds, without it fails.

Now we have enough assertions to design a function which inserts an element
into a sorted list maintaining the list sorted. Inserting into an empty list is trivial
since the one element list is always sorted.

Look at the case that we want to insert an element x into an already sorted
list yˆa. There are two cases: x <= y and not (x <= y). In the first case the
new element is a lower bound of the list and can therefore be prepended without
destroying the sorting. In the second case we know that y is a lower bound of
any permutation of xˆa. I.e. the list with the head element y put in front the x

inserted ordered into a is sorted as well.

into (x:L, l:[L]): [L]
-> inspect l

case [] then [x]
case yˆa then

if x <= y then xˆyˆa else y ˆ x.into(a) end
end

We claim that the function into returns a list which is a permutation of xˆa
and sorted. Before trying to prove these facts by induction let us look at the
different cases separately.

The insertion of an element into the empty list maintains the permutation
property.

all(x:L)
proof

x.into([]) = [x]
ensure

permutation ([x], x.into([]))
end

The induction step requires to distinguish two cases because the function
into contains an if expression for insertion into a nonempty list. We prove the
permutation property separately for the two cases.

all(x,y:L, a:[L])
require

permutation(xˆa, x.into(a))
x <= y

proof
x.into(yˆa) = xˆyˆa

ensure
permutation(xˆyˆa, x.into(yˆa))

end

all(x,y:L, a:[L])
require

permutation(xˆa, x.into(a))
not (x <= y)

proof
permutation(xˆyˆa, yˆxˆa) -- module list

46

permutation(yˆxˆa, yˆx.into(a)) -- ind hypo/list
proof

x.into(yˆa) = yˆx.into(a)
yˆx.into(a) in {l: permutation(l,x.into(yˆa))}

ensure
permutation(yˆx.into(a), x.into(yˆa))

end
ensure

permutation(xˆyˆa, x.into(yˆa))
end

Having these two lemmas the proof by induction of the permutation property
is easy.

all(x:L, a:[L])
proof

[] in {a: permutation (xˆa, x.into(a))}

all(y:L, a:[L])
require

permutation(xˆa, x.into(a))
proof

x <= y or not (x <= y)

x <= y ==> permutation(xˆyˆa, x.into(yˆa))
not (x <= y) ==> permutation(xˆyˆa, x.into(yˆa))

ensure
permutation(xˆyˆa, x.into(yˆa))

end

a in {a: permutation (xˆa, x.into(a))}
ensure

permutation (xˆa, x.into(a))
end

In order to prove the sortedness of the resulting list we have to make the
same case split in the induction step.

all(x:L, a:[L])
proof

[] in {a: a.is_sorted ==> x.into(a).is_sorted}

all(x,y:L, a:[L])
require

a.is_sorted ==> x.into(a).is_sorted
(yˆa).is_sorted

proof
x <= y or not (x <= y)

require x <= y
ensure x.into(yˆa).is_sorted end

require not (x <= y)
proof y.is_lower_bound(xˆa)

permutation(xˆa, x.into(a))
(yˆx.into(a)).is_sorted

ensure x.into(yˆa).is_sorted end
ensure

47

x.into(yˆa).is_sorted
end

a in {a: a.is_sorted ==> x.into(a).is_sorted}
ensure

a.is_sorted ==> x.into(a).is_sorted
end

The insertion of one element into a sorted list has been the hard part. In
order to sort the list completely we just have to step recursively through the
elements and insert one by one into an initially empty list.

sorted (a:[L]): [L]
-> inspect a

case [] then []
case hˆt then h.into(t.sorted)
end

The proofs of the permutation property and the sortedness is just an appli-
cation of the standard template for doing induction proofs with some help at
the induction step.

all(a:[L])
proof

[] in {a: permutation(a, a.sorted)}
all(x:L, a:[L])

require
permutation(a, a.sorted)

proof
permutation(xˆa, xˆa.sorted)
permutation(xˆa.sorted, x.into(a.sorted))
proof x.into(a.sorted) = (xˆa).sorted
ensure permutation(x.into(a.sorted),

(xˆa).sorted) end
ensure

permutation(xˆa, (xˆa).sorted)
end

a in {a: permutation(a, a.sorted)}
ensure

permutation(a, a.sorted)
end

all(a:[L])
proof

[] in {a: a.sorted.is_sorted}

all(x:L,a:[L])
require

a.sorted.is_sorted
proof

x.into(a.sorted).is_sorted
ensure

(xˆa).sorted.is_sorted
end

a in {a: a.sorted.is_sorted}
ensure

48

a.sorted.is_sorted
end

49

Chapter 4

Proof Engine

4.1 Rules of the Proof Engine

The proof engine is based on a few very simple rules and knows only of universal
quantification, existential quantification and implication.

4.1.1 Modus Ponens and Deduction Law

The modus ponens law says: Whenever the assertions

a

a ==> b

are valid with arbitrary boolean expressions a and b then we can conclude the
validity of

b

The modus ponens law allows the proof engine to draw conclusions by fol-
lowing implications.

The deduction law allows us to prove implications. It says: In order to prove
the implication

a ==> b

with arbitrary boolean expression a and b we can assume a and prove b under
this assumption. I.e. the two assertions

a ==> b

require
a

proof
...

ensure
b

end

50

are equivalent i.e. if we can prove the latter we have proved the former.
The deduction law can be generalized to arbitrary implication chains. I.e.

the proof engine is allowed to prove the chain

a ==> b ==> ... ==> z

by proving the assertion

require
a; b; ...

proof
...

ensure
z

end

4.1.2 Generalization of Variables

Assume that we want to prove the assertion

all(x,y,...) exp

I.e. we have to prove that exp is valid for all possible values of the variables.
Such a statement can be proved by assuming arbitrary values for the vari-

ables and proving the expression.
The proof engine proves a universally quantified statement by shifting the

variables into the context and then proving the expression. If this is successful
then the validity of the universally quantified assertions is concluded.

Furthermore the proof engine knows that in it can reorder the variables and
bubble up variables i.e. it considers the two following assertions equivalent (with
proper renamings of variables to avoid name clashes).

all(x,y) a ==> b ==> all(z) c

all(y,x,z) a ==> b ==> c

The last rule is used by the proof engine to transform universally quantified
expressions to prenex normal form.

4.1.3 Specialization of Variables

If there is a proved statement of the form

all(x:X, y:Y,...) exp

the proof engine is allowed to generated valid asssertions by substituting the
variables x,y,... by arbitrary expressions of consistent type.

The specialization can be partial if the expression exp is an implication where
the first assumption contains only a part of the variables. E.g. if we have the
proved assertion

all(x,y) f(x) ==> g(x,y)

and the expression a has a type compatible to the type of x then the proof
engine can do a partial specialization and conclude the assertion

51

f(a) ==> all(y) g(a,y)

If the first premise in the implication chain does not contain any of the
variables then partial specialization can be done as well. E.g. the assertion

all(a:BOOLEAN) false ==> a -- ex falso quodlibet

can be partially specialized to

false ==> all(a:BOOLEAN) a

Example:

all(x,y,z) x or y ==> (x ==> z) ==> (y ==> z) ==> z
a in p or a in q

-- allows the partial specialization
(a in p or a in q) ==>
all(z) (a in p ==> z) ==> (a in q ==> z) ==> z

4.1.4 Existential Quantification

The existentially quantified assertion

some(x,y,...) exp

can be proved by substituting the variables x,y,... in the expression exp by
some other expressions and proving the substituted expression. This method is
called finding a witness for the existentially quantified variables.

If the above existentially quantified assertion has already been proved the
proof engine is allowed to conclude the following assertion from it.

all(a:BOOLEAN) (all(x,y,...) exp ==> a) ==> a

The validity of this assertion should be obvious. If there exist some values for
the variables x,y,... so that the expression exp is valid and for all values of
the variables the validity of exp implies the validity of a then the assertion a is
valid.

4.1.5 Function Expansion

The proof engine is allowed to expand function definitions. E.g. boolean nega-
tion is defined as

(not) (a:BOOLEAN) -> a ==> false

Therefore the proof engine can expand the expression

not (a <= b)

to

a <= b ==> false

52

4.1.6 Beta Reduction

Albatross has two kind of lambda expressions: function and predicate literals
of the form

(x,y,...) -> exp

{x,y,...: exp}

The following expressions can be substituted by exp2 where exp2 is exp with all
variables x,y,... substituted by the expressions a,b,....

((x,y,...) -> exp) (a,b,...)

{x,y,...: exp} (a,b,...)

(a,b,...) in {x,y,...: exp}

Note that a in p and p(a) are equivalent for predicates p.

4.2 How the Proof Engine Works

A context of the proof engine is a sequence of variables and a sequence of
assumptions and a sequence of proved assertions. Contexts can be stacked.
A new inner context is opened by shifting variables and assumptions into the
context. Within the context assumptions are treated as proved statements. By
leaving a context the variables and assumptions have to be discharged.

4.2.1 Proof of an Assertion Feature

An assertion feature has the general form:

all(a,b,...)
require

assumption_1
assumption_2
...

proof
intermediate_1
intermediate_2
...

ensure
conclusion_1
conclusion_2

end

where all assumptions and conclusions are expressions and all intermediate as-
sertions are expressions or nested assertion features with or without new vari-
ables.

The proof engine proves an assertion feature by the following algorithm.

1. Open an new context

2. Shift all variables into the context.

53

3. For all assumptions: Prove the preconditions of the assumption and shift
the assumtion into the context.

4. For all intermediate assertions:

(a) If it is an expression then prove all preconditions and prove the ex-
pression and add it to the context.

(b) If it is an assertion feature then apply this algorithm recursivly and
add the result to the context.

5. For all conclusions prove the preconditions of the conclusion and the con-
clusion and add the conclusion to the context.

6. Leave the context and add all conclusions with properly discharged vari-
ables and assumtions to the outer context

4.2.2 Prove an Assertion

Proving of any assertion (precondition or assertion expression) is done by the
following algorithm:

1. Forward close the context by forward reasoning.

2. Enter the assertion as deep as possible i.e. split universal quantification
and add the corresponding variables and split implications and add as-
sumptions.

3. Directly prove the goal. In case of success the proof is done. In case of
failure continue.

4. Prove the goal by backward reasoning.

5. Reverse the entering process and discharge the proved goal.

4.2.3 Directly Prove a Goal

The proof engine tries to directly prove a goal after it has been fully entered i.e.
the goal is neither a universally quantified expression nor an implication.

A goal is directly provable if one of the following holds:

1. The goal is already in the context.

2. A schematic assertion can be found in the context together with a substi-
tution so that the substitution applied to the schematic assertion makes
it identical with the goal.

3. The goal is an existentially quantified assertion and a witness expression
can be found in the context to prove the existential quantification.

4. The goal is an equality of the form

54

f(a1,a2,...) = f(b1,b2,...)

and the assertions

a1 = b1
a2 = b2
...

are already in the context.

4.2.4 Entering and Discharging

An assertion expression has the general form

all(x,y,...) a ==> b ==> ... ==> z

where the universal quantification and the premises of the implication chain
are optional. If no universal quantification and no premises are present then
the assertion expression is the unsplittable expression z and the enter and the
discharge procedures have nothing to do.

The entering procedure consists in

1. Shift the variables x,y,... into the context.

2. Shift the assumptions a,b,... one by one into the context.

3. Forward close the context by forward reasoning.

4. If the target z can be entered apply the procedure recursively

After entering the assertion expression there is a goal z to be proved which
cannot be entered any more. The goal (or a witness for it) can either be found
in the context or can be proved by backward reasoning (or the proof fails).

Lets assume that the prove of the target goal z has succeeded. Then the
entering process has to be reversed by the discharge procedure. Since the enter-
ing procedure is recursive we have to consider the general case that the original
assertion expression has the form

all(x,y,...) a ==> b ==> ... ==> all(t,u,...) z0

The proof engine normalizes the original assertion to

all(x,y,...,t,u,...) a ==> b ==> ... ==> z0

with proper renaming to avoid name clashes. Furthermore all unused variables
are eliminated and the remaining variables are sorted to reflect the order in
which they appear in the implication chain.

55

4.2.5 Forward Reasoning

Forward reasoning is the process of drawing conclusions from the assertions
within a context. A context is forward closed by applying the following rules as
long as possible:

1. Find a pair of assertions of the form a and a ==> b and apply the moduls
ponens law by adding b to the context.

2. Find a pair of assertions of the form a and all(x,y,...) p ==> ... where
p is not a pure variable and a (partial) substitution of the variables so that
p becomes identical to a if the substitution is applied. Add the (partially)
specialized assertion to the context.

3. Find an existentially quantified assertion some(x,y,...) exp and add the
assertion

all(a) (all(x,y,...) exp) ==> a

to the context.

4. Find an assertion where an evaluation is possible. Add the evaluated
assertion to the context.

Some restrictions apply to the application of the first and the second rule.

1. The (partial) specialization of a schematic assertion of the form

all(x,y,...) a ==> b ==> ... ==> z

is called intermediate and remains intermediate until the final conclusion
z has been added fully specialized to the context.

2. An intermediate assertion is never used as the premise in the modus po-
nens rule.

3. The final fully specialized conclusion of an intermediate assertion is added
to the context only if the conclusion is simpler than all premises. A term
a is simpler than a term b if its expression tree has less nodes than the
expression tree of the term b after all function expansions have been done.

These restrictions guarantee the termination of forward reasoning.

4.2.6 Backward Reasoning

If an assertion has been fully entered and is not directly provable then the proof
engine starts to prove the goal by backward reasoning.

1. Find and generate backward rules. A valid backward rule is an implication
chain of the form

p1 ==> p2 ==> ... ==> goal

56

which has not yet been used in the proof.

2. Find one backward rule for which all premises can be proved. In case of
success the proof is done by applying the modus ponens rule, in case of
failure the proof fails.

There are two ways to generate backward rules:

1. Find a schematic assertion of the form

all(x,y,...) p1 ==> p2 ==> ... ==> z

where z is not a variable and can be unified with the goal by some substi-
tution of the variables. The fully specialized assertion is a valid backward
rule. Restriction: If some of the premises (after the substitution and with
all functions expanded) are more complicated than the goal (with all func-
tions expanded) and the schematic rule has already been used before in
the proof, then the generated backward rule is not valid.

2. If eval is a valid evaluation of the goal then

eval ==> goal

is a valid backward rule.

4.2.7 Evaluation

Universally quantified expressions, implications and conjunctions i.e. expres-
sions of the following forms are never evaluated.

all(x,y,...) exp

a and b

a ==> b

Ways to evaluate an expression:

1. Expansion of the toplevel function. If the toplevel function is a function
term then do a toplevel expansion of the function term.

2. If the toplevel function does not have a definition and the expression is
neither universally quantified nor an implication nor a conjunction then
the expression with all functions expanded recursively is a valid evaluation.

3. Beta reduction of the toplevel term.

4. If the expression has the subterms a1,a2,... i.e. it has the form f(a1,a2,...)

and there are the assertions

a1 = b2
a2 = b2
...

57

in the context where the right hand side of the equation is simpler than
the left hand side (after full function expansion), then f(b1,b2,...) is a
valid evaluation of the expression.

58

Chapter 5

Language Reference

5.1 Structure of Albatross Programs

Modules are compilation units. Each module has an implementation file with
the extension .al and an interface file with the extension .ali. The user of a
module has access only to the elements declared in the interface file.

A collection of modules in the same directory form an Albatross package
or an Albatross library. The compiler works on Albatross packages. Within
a directory of Albatross source files the compiler offers you the following basic
commands:

alba init -- initializes the directory
alba status -- displays modules which need recompilation
alba compile -- compiles all modules which require recompilation
alba help -- get help about commands, options and arguments

I.e. the albatross compiler automatically keeps track of dependencies be-
tween modules.

Each module has to start with a declaration which states the used modules.

-- some source file
use

module_1
module_2
...

end

...

The order of the used modules is irrelevant. The modules used by module_1

and module_2 are used implicitly.
The name of a module is the filename of the module’s source file without

its extension. I.e. the module name of the module having the source files
boolean.al and boolean.ali is boolean.

Modules of the same package are used by name. Modules of other packages
are used by their fully qualified names. E.g. a module with the usage declaration

59

use
alba.base.boolean
alba.base.predicate
graphic

end

uses the modules boolean and predicate of the package alba.base and the mod-
ule graphic of the same package.

The package name is the name of the directory where it resides. The package
alba.base has to reside in a directory named alba.base.

The Albatross compiler searches for packages within its search path. Search
paths can be given to the compiler on the command line

alba -I path/to/package_1 -I path/to/package_2 ... compile

or by defining an environment variable called ALBA_LIB_PATH. If the environment
variable has the content

path/to/lib_1:path/to/lib_2:path/to/lib_3:...

then the Albatross compiler searches for libraries in all these paths.
The paths on the command line override the paths of the environment vari-

able.
The locations of commonly used libraries should be given by the environment

variable and the location of libraries/packages used only for a specific program
should be given on the command line.

5.2 Modules

A module is the basic compilation unit. Each module has an implementation
file with the name name.al an an optional interface file with the name name.ali

where name is the name of the module.
The interface file just defines the public view of a module. Therefore it

cannot introduce anything which does not appear in the corresponding imple-
mentation file.

A module without an interface file cannot be used by other modules.
A module file consists of a usage header and a sequence of declarations.

Syntax:

module: [use_block] declarations

use_block: use module_list end

module_list: {one_module separator ...}+

one_module: {identifier ’.’ ...}+

declarations: {declaration [separator] ...}*

declaration: class_declaration
| formal_generic
| assertion_feature

60

| named_feature

formal_generic: uidentifier ’:’ type

Rules and validity:

1. No circularity is allowed in the usage of modules.

2. An interface file can use only modules which have been used in the im-
plementation file. Usage can be implicit. E.g. if module a uses module b

and module b uses module c then module a uses module c implicitly even
if module c has not been mentioned in the usage block of module a.

3. A used module of the same package must not be prefixed with the package
name.

A separator can be a semicolon or a newline (for details on newlines as
separators see the chapter lexical conventions 5.10).

A used module in the usage block has the form a.b.c.m where m is the name
of the module and a.b.c is the name of the package where the module resides.

A formal generic is a type variable. The declaration A:TP declares the type
variable A with the concept type TP. The type variable A can be replaced by any
type which satisfies the concept (i.e. inherits from) TP.

The name scope of a formal generic is its module.
Examples:

The module boolean of the basic library e.g. has the following interface file:

-- file: boolean.ali

immutable class BOOLEAN end

false: BOOLEAN
true: BOOLEAN
(==>) (a,b:BOOLEAN): BOOLEAN
(and) (a,b:BOOLEAN): BOOLEAN
(or) (a,b:BOOLEAN): BOOLEAN

(not) (a:BOOLEAN): BOOLEAN) -> a ==> false
(=) (a,b:BOOLEAN): BOOLEAN) -> (a ==> b) and (b ==> a)

all(a,b:BOOLEAN)
ensure

(not a ==> false) ==> a
a and b ==> a
a and b ==> b
...

end

The module declares the type BOOLEAN as immutable. I.e. all objects of type
BOOLEAN cannot be modified.

If a class has the same name as the module, just in uppercase, then the class
is available to the users without any qualification. If a class has a name different
from the module name it can be accessed by the users of the module only by

61

qualifying the class name with the modulename. E.g. the class A declared in
the module x has to be used outside the defining module as x.A. Sometimes it
might even be necessary to add the package name (e.g. p.x.A) to disambiguate
the situation.

Furthermore it defines the constants true and false. No definition of these
constants are visible to the user. The implementation file might have a definition
of these constants, but they are hidden from the user.

The three binary boolean functions implication ==>, conjunction and and
disjunction or are declared without definition which means their definition is
not available to the user.

The functions negation not and boolean equivalence = are declared with a
definition. Since the definition is visible the compiler can expand any expression
of the form not (x + y = z) to (x + y = z) ==> false

The assertion declaration states valid assertions about booleans. In the
interface file the assertions are just stated. The proofs can be found in the
corresponding implementation file boolean.al.

The first assertion (not a ==> false) ==> a gives us the opportunity to
prove any assertion a by assuming not a and deriving from it false.

The module any of the basic library has the following interface file:

-- file: any.ali
use boolean end

deferred class ANY end

G: ANY

(=) (a,b:G): BOOLEAN deferred end
(/=) (a,b:G): BOOLEAN -> not (a = b)

all(a:G) deferred ensure a = a end
all(a:G) ensure a /= a ==> false end

immutable class boolean.BOOLEAN
inherit ANY end

The module declares the class ANY as a deferred class which means that it
can have deferred functions and/or assertions which have to be defined in other
classes which inherit from the class ANY.

The module defines a formal generic G. Formal generics are type variables.
Any type can be substituted for G as long as the type inherits from the class
ANY.

The module any has the purpose to define equality. Therefore it declares
a deferred function named = which compares two objects of the same type.
Any descendant of ANY has to define the function or redeclare it as deferred.
Furthermore it declares an assertion stating reflexivity of equality. Since the
assertion is deferred any descendant of the class ANY has to either prove this
statement or restate it as deferred.

Inequality /= is defined in the module any as an effective function. This
function is inherited to any descendant.

62

Furthermore the module any states that it has proved the fact that a /= a

==> false is valid for any a. Any descendant of ANY can take this fact for
granted.

Note that the class name BOOLEAN is qualified with the module name in the
inheritance class despite the fact that the class BOOLEAN has the same name as
the corresponding module. The qualification is necessary in this case because
otherwise the compiler would generate a new class BOOLEAN of the module any

which is different from the corresponding class of the module boolean.
The module any states with this inheritance clause that the class BOOLEAN

can inherit the class ANY i.e. that it has a function = which is reflexive.
The module boolean cannot state this inheritance relation because it cannot

use the module any since the module any already uses the module boolean and
no circularity is allowed.

5.3 Classes

Syntax:

class_declaration: [header_mark] class
class_name [class_generics]
[creator_clause]
[inherit_clause]
end

header_mark: immutable | deferred | case

class_name: {identifier ’.’ ...}* uidentifier

class_generics: ’[’ {uidentifier ’,’ ...}+ ’]’

Rules and validity:

1. In a class declaration only formal generics can be used which have already
been declared in the surrounding module.

2. A redeclaration of a class must have the same header mark, the same
number of generics and the formal generics must have the same concepts
as the previous declaration.

3. All deferred functions and assertions of a class have to be declared in the
same module as the first declaration of the class.

4. If a class has already been used as a parent in an inheritance clause then
no more deferred functions and assertions can be declared for the class.

The first declaration of a class in a module does not have an inheritance
clause i.e. it has one of the forms

immutable class BOOLEAN end -- file: boolean.al[i]

deferred class ANY end -- file: any.al[i]

63

deferred class PARTIAL_ORDER end -- file: partial_order.al[i]

immutable class FUNCTION[A,B] end -- file: function.al[i]

After the class has been declared with its potential formal generics, features and
assertions can be introduced to the class.

Classes may add inheritance clauses if they also declare the appropriate
features and assertions.

A class declaration where the classname is unqualified always declares a class
which belongs to the current module. The first declaration of a class within a
module introduces a new class.

If a class has the same name as the module (just in upper case) then the
class can be used by other modules to declare types without any qualification
(however qualification can be used to remove ambiguities).

A class having a name different from the module name can be used outside
the defining module to define types only by adding the module name to the
class name in front of the class name.

A class can redeclared as often as needed (usually to add inheritance clauses)
as long as the redeclaration is consistent with the original declaration.

Classes can be redeclared in modules different from the original module,
but in the reclaration the class name has to be prefixed with the name of the
original module. Without the module name a new class having the same name
is declared. The following example illustrates this.

-- file a.ali
immutable class A end -- declares a new class ’A’ in module ’a’

-- file b.ali
immutable class A end -- declares a new class ’A’ in module ’b’

immutable class a.A end -- redeclares the class ’A’ of the module ’a’

5.4 Creators

Syntax:

creator_clause: create { creator [separator] ...}+

creator: feature_name [’(’ formals ’)’]

Definition: A base creator is a creator which has no argument depending on the
surrounding case class. The other creators are recursive.
Rules and validity:

1. There has to be at least one base creator.

2. All base creators have to occur before the recursive creators.

3. The creators can use only formal generics of the surrounding class.

4. All formal generics have to appear in at least one of the constructors in a
nonrecursive argument.

64

5.5 Inheritance

Syntax:

inherit_clause: inherit {parent [separator] ...}+

parent: [ghost] type

Rules and validity:

1. Immutable types cannot be used as parents.

2. A parent can involve only formal generics of the inheriting class.

3. The inheritance relation must be acyclic.

4. All deferred functions and assertions of the parent have to be present
in the inheriting class, either redeclared as deferred or redeclared with a
definition or proof respectively.

5. All effective features of the parent which have already a declaration in the
inheriting class must be consistent with the definition in the parent.

6. If a deferred function of the parent is present in the inheriting class as a
ghost function then the parent must be a ghost type.

5.6 Types

Syntax:

type: simple_type
| predicate_type
| function_type
| list_type
| ’(’ {type ’,’ ...}+ ’)’

simple_type: class_name [actual_generics]

actual_generics: ’[’ {type ’,’ ...}+ ’]’

predicate_type: type ’?’

function_type: type ’->’ type

list_type: ’[’ {type ’,’ ...}+ ’]’

-- ’?’ has higher precedence than ’->’

Rules and validity:

1. The number of actual generics has to coincide with the number of formal
generics of the class.

2. Each actual generic has to satisfy the concept of the corresponding formal
generic of the class.

65

Examples:

(A,B,C) -- tuple with three types
-- parsed as (A,(B,C))
-- shorthand for TUPLE[A,TUPLE[B,C]]

A -> B -- shorthand for FUNCTION[A,B]

(A,B) -> C -- shorthand for FUNCTION[(A,B),C]

A -> B -> C -- shorthand for FUNCTION[A, FUNCTION[B,C]]
-- ’->’ is right associative

A? -- shorthand for PREDICATE[A] i.e. a set of
-- elements of type A

(A,B)? -- shorthand for PREDICATE[(A,B)] i.e. a set of
-- tuples of type (A,B)

A -> B? -- shorthand for FUNCTION[A,PREDICATE[B]]

(A -> B)? -- shorthand for PREDICATE[FUNCTION[A,B]]

[A] -- shorthand for LIST[A]

[A,B->C] -- shorthand for LIST[TUPLE[A,FUNCTION[B,C]]]

The basic library has the modules tuple, predicate and function. If any of
the corresponding types is used the module has to appear directly or indirectly
in the use block of the using module.

5.7 Named features

Syntax:

named_feature: feature_name [’(’ formals ’)’]
[’:’ [ghost] type]
[feature_body]

feature_name: identifier
| ’(’ operator ’)’
| number
| true
| false

formals: {formal_argument ’,’ ...}+

formal_argument: identifier [’:’ type]

feature_body: ’->’ expression
| ’=’ expression
| [require_block]

[feature_implementation]
[ensure_block]
end

66

require_block: require {expression separator ...}+

ensure_block: ensure {expression separator ...}+

feature_implementation: deferred

Rules and validity:

1. In a named feature at least one of the optional components must be
present.

2. In the feature body at least one of the optional components must be
present. I.e. a feature body cannot consist of the keyword end only.

3. If the feature body is -> expression then formal arguments must be
present and the expression must not have any preconditions i.e. the func-
tion is total.

4. If the feature body is = expression then the feature is a constant and
no formal arguments are allowed and the expression must not have any
preconditions.

5. If the feature name is an operator there must be one formal argument
for unary operators and two formal arguments for binary operators. Note
that most of the operators can be unary and binary.

6. If the implementation of a function is not computable (e.g. if it involves
universal or existential quantification) then the keyword ghost must be
present in the result type.

7. The postcondition of a function might be of the form Result = exp. If the
expression contains non computable elements then the function must be
declared as ghost function.

8. If the postcondition specifies only properties of the return value then the
function has to be declared as ghost function and the proof engine must
be able to prove the existence and uniqueness of the return value.

Examples:
A simple declaration without body:

my_function (a,b:A, d:D): RT

This is a valid declaration of a function having the signature (A,A,B):RT. The
function has no body. Within an implementation file such a feature is practi-
cally useless because you cannot do anything with it. In an interface file this
declaration can be useful if assertions are given which supply useful properties
of the function.
A constant and a binary operator without body and a unary and binary operator
with body:

67

false: BOOLEAN

(==>) (a,b:BOOLEAN): BOOLEAN

(not) (a:BOOLEAN): BOOLEAN -> a ==> false

(=) (a,b:BOOLEAN): BOOLEAN -> (a ==> b) and (b ==> a)

The empty set and the universal set defined as constants with body:

G: ANY

0: G? = {x: false}
1: G? = {x: true}

A ghost function involving non computable elements in its definition:

PO: PARTIAL_ORDER

is_lower_bound (a:PO, p:PO?): ghost BOOLEAN
-> all(x) x in p ==> a <= x

Declaration of a function with a precondition:

A: ANY; B: ANY

value_at (f:A->B, a:A):B -> f(a) -- ILLEGAL!!

value_at (f:A->B, a:A):B
require

a in f.domain
ensure

Result = f(a)
end

All functions in Albatross are potentially partial. Therefore the first declaration
is not valid because the expression has a precondition. The second declaration
is valid because it makes the precondition explicit.
Declaration of a function by using properties:

A:ANY; B:ANY

inverse (f:A->B): ghost (B->A)
require

f.is_injective
ensure

Result.domain = f.range
all(x) x in f.domain ==> Result(f(x)) = x

end

The inverse of a function has to be declared as a ghost function because the
return value of inverse is specified in the postcondition with properties and not
directly with a computable formula.

Note: If the return value of a function is given by properties then proof
engine must be able to prove that the return value exists and that it is unique.

68

5.8 Assertions

Syntax:

assertion_feature: all ’(’ formals ’)’
[require_block]
[proof_block]
ensure_block
end

proof_block: proof {proof_expression separator ...}+

proof_expression: expression
| assertion_feature
| [require_block]

proof_block
ensure_block
end

Rules and validity:

1. All assertions must be provable by the proof engine.

Examples:

all(p:G?)
require

some(x) x in p
proof

all(x) x in p ==> p /= 0
ensure

p /= 0
end

all(p:G?)
require

p /= 0
proof

not (some(x) x in p) ==> false
ensure

some(x) x in p
end

all(p,q:G?)
require

p /= 0
proof

some(x) x in p
all(x)

require
p(x)

proof
x in p + q
some(x) x in {x: x in p + q}

ensure
p + q /= 0

end
ensure

69

p + q /= 0
end

5.9 Expressions

Syntax:

expression: simple_expression
| operator_expression
| f_call
| oo_call
| tuple
| function_literal
| predicate_literal
| list
| listed_set
| quantified
| typed
| ’(’ expression ’)’

simple_expression:
identifier | number | false | true | Result

operator_expression:
expression binary_operator expression

| unary_operator expresssion

f_call: expression ’(’ actuals ’)’

oo_call: expression ’.’ identifier [’(’ actuals ’)’]

tuple: ’(’ expression ’,’ {expression ’,’ ...}+ ’)’

actuals: {expression ’,’ ...}+

function_literal:
’(’ formals ’)’ [’:’ type] ’->’ expression

| agent ’(’ formals ’)’ [’:’ type]
[require_block]
ensure_block
end

predicate_literal:
’{’ formals ’:’ expression ’}’

listed_set: ’{’ {expression ’,’ ...}+ ’}’

list: ’[’ {expression ’,’ ...}* ’]’

quantified: quantifier ’(’ formals ’)’ expression

quantifier: all | some

typed: expression ’:’ type

binary_operator:

70

’+’ | ’-’ | ’*’ | ’/’ | and | or | ’==>’ |
’ˆ’ |
’<=’ | ’<’ | ’>’ | ’>=’ |
’=’ | ’/=’ | ’˜’ | ’/˜’ |
free_operator

unary_operator:
not | old | ’+’ | ’-’ | ’*’ | free_operator

Precedence and associativity:
Ambiguities are resolved according to the following precedences and asso-

ciativities starting with the highest precedence.

’.’ -- left
not, old
free_operator -- left
’ˆ’ -- right
’*’, ’/’ -- left
’+’, ’-’ -- left
’<=’, ’<’, ’>=’, ’>’, ’=’, ’/=’, ’˜’, ’/˜’, in, /in
and, or
’==>’ -- right

Examples:
Functions can be called in functional or in object oriented notation. The

following expressions are equivalent

-- functional object oriented

f(x,y,...) x.f(y,...)

f(x) x.f

f(f(f(f(x)))) x.f.f.f.f

If the argument of a call is a tuple then nested parentheses are not necessary,
i.e. the following simplified notation is possible (only for functional notation).

-- detailed simplified
r((x,y)) r(x,y)

Tuples are parsed with right association.

-- tuple parsed as
(a,b,c,...) (a,(b,(c,...)))

The quantifiers and the arrow -> are greedy i.e. they span to the right as
far as possible. To limit the span parentheses can be used.

Types are greedy as well, i.e. they span to the left as far as possible.
A listed sets and lists are just a shorthand notations. The parser does the

following expansion

-- shorthand expansion
{a,b,...} a.singleton + b.singleton + ...

[a,b,...,z] a ˆ b ˆ ... ˆ z ˆ []

71

5.10 Lexical Conventions

There are two types of comments. The first one starts with the sequence --

followed by a blank and spans to the end of the line. The second one begins
with the sequence {: and ends with :} and spans an abitrary amount of text.
The second comment type can be nested. Comments are completely ignored by
the compiler.

A separator is either the semicolon or a newline between an endtoken and a
begintoken.

begintoken: identifier
uidentifier
number
require
ensure
proof
true
false
not
’(’
’[’
’{’

endtoken: identifier
uidentifier
number
true
false
’)’
’]’
’}’

Note that no operator can be an endtoken because Albatross does not have
postfix operators. Furthermore nearly all operators cannot be starttokens either.
Therefore if a new expression starts with a unary operator the expressions has
to be either parenthesized or the previous expression has to be terminated with
a semicolon.

identifier: [a-z][a-z0-9_]*

uidentifier: [A-Z][A-Z0-9_]*

number: [0-9]+

free_operator: [+-/*<>=˜|ˆ]+

The following identifiers are reserved words in Albatross:

all and as assert
case check class create
deferred do
else elseif end ensure
false feature from
ghost
if immutable import in inherit
inspect invariant

72

local
not note
old or
proof
redefine rename require
some
then true
undefine use
variant
while

73

	Introduction
	Overview
	Tutorial
	Getting Started
	A Minimal Albatross Program
	Reasoning with Implication
	The Deduction Law
	Conjunction
	Disjunction

	Boolean Logic
	Idempotence of Conjunction and Disjunction
	Ex Falso Quodlibet
	De Morgan Laws

	Important Modules of the Base Library
	The Module 'any'
	The Module 'predicate'

	Predicate Logic
	Some Simple Theorems
	Singleton Sets
	Leibniz Equality and Term Rewriting
	Existential Quantification

	Using and Proving Abstractions
	Partial Order
	Linear Order

	Inductive Data Types
	Basics of Inductive Types
	Recursion and Induction
	Inversion and Injection Laws
	Binary Tree
	List Sorting

	Proof Engine
	Rules of the Proof Engine
	Modus Ponens and Deduction Law
	Generalization of Variables
	Specialization of Variables
	Existential Quantification
	Function Expansion
	Beta Reduction

	How the Proof Engine Works
	Proof of an Assertion Feature
	Prove an Assertion
	Directly Prove a Goal
	Entering and Discharging
	Forward Reasoning
	Backward Reasoning
	Evaluation

	Language Reference
	Structure of Albatross Programs
	Modules
	Classes
	Creators
	Inheritance
	Types
	Named features
	Assertions
	Expressions
	Lexical Conventions

